Площадь сечения эллипса. Овал

    Окружностью называется замкнутая плоская кривая, все точки которой равноудалены от заданной точки (центра окружности). Расстояние от любой точки окружности \(P\left({x,y} \right)\) до ее центра называется радиусом . Центр окружности и сама окружность лежат в одной и той же плоскости. Уравнение окружности радиуса \(R\) с центром в начале координат (каноническое уравнение окружности ) имеет вид
    \({x^2} + {y^2} = {R^2}\).

    Уравнение окружности радиуса \(R\) с центром в произвольной точке \(A\left({a,b} \right)\) записывается как
    \({\left({x - a} \right)^2} + {\left({y - b} \right)^2} = {R^2}\).

    Уравнение окружности, проходящей через три точки , записывается в виде: \(\left| {\begin{array}{*{20}{c}} {{x^2} + {y^2}} & x & y & 1\\ {x_1^2 + y_1^2} & {{x_1}} & {{y_1}} & 1\\ {x_2^2 + y_2^2} & {{x_2}} & {{y_2}} & 1\\ {x_3^2 + y_3^2} & {{x_3}} & {{y_3}} & 1 \end{array}} \right| = 0.\\\)
    Здесь \(A\left({{x_1},{y_1}} \right)\), \(B\left({{x_2},{y_2}} \right)\), \(C\left({{x_3},{y_3}} \right)\) − три точки, лежащие на окружности.

    Уравнение окружности в параметрической форме
    \(\left\{ \begin{aligned} x &= R \cos t \\ y &= R\sin t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(x\), \(y\) − координаты точек окружности, \(R\) − радиус окружности, \(t\) − параметр.

    Общее уравнение окружности
    \(A{x^2} + A{y^2} + Dx + Ey + F = 0\)
    при условии \(A \ne 0\), \(D^2 + E^2 > 4AF\).
    Центр окружности расположен в точке с координатами \(\left({a,b} \right)\), где
    \(a = - \large\frac{D}{{2A}}\normalsize,\;\;b = - \large\frac{E}{{2A}}\normalsize.\)
    Радиус окружности равен
    \(R = \sqrt {\large\frac{{{D^2} + {E^2} - 4AF}}{{2\left| A \right|}}\normalsize} \)

    Эллипсом называется плоская кривая, для каждой точки которой сумма расстояний до двух заданных точек (фокусов эллипса ) постоянна. Расстояние между фокусами называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром эллипса . У эллипса есть две оси симметрии: первая или фокальная ось, проходящая через фокусы, и перпендикулярная ей вторая ось. Точки пересечения этих осей с эллипсом называются вершинами . Отрезок, соединяющий центр эллипса с вершиной, называется полуосью эллипса . Большая полуось обозначается через \(a\), малая полуось − через \(b\). Эллипс, центр которого находится в начале координат, а полуоси лежат на координатных прямых, описывается следующим каноническим уравнением :
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize + \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1.\)

    Сумма расстояний от любой точки эллипса до его фокусов постоянна:
    \({r_1} + {r_2} = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left({x,y} \right)\) до фокусов \({F_1}\) и \({F_2}\), \(a\) − большая полуось эллипса.

    Соотношение между полуосями эллипса и фокусным расстоянием
    \({a^2} = {b^2} + {c^2}\),
    где \(a\) − большая полуось эллипса, \(b\) − малая полуось, \(c\) − половина фокусного расстояния.

    Эксцентриситет эллипса
    \(e = \large\frac{c}{a}\normalsize

    Уравнения директрис эллипса
    Директрисой эллипса называется прямая, перпендикулярная его фокальной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. Эллипс имеет две директрисы, отстоящие по разные стороны от центра. Уравнения директрис записываются в виде
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize.\)

    Уравнение эллипса в параметрической форме
    \(\left\{ \begin{aligned} x &= a\cos t \\ y &= b\sin t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси эллипса, \(t\) − параметр.

    Общее уравнение эллипса
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \({B^2} - 4AC

    Общее уравнение эллипса, полуоси которого параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC > 0\).

    Периметр эллипса
    \(L = 4aE\left(e \right)\),
    где \(a\) − большая полуось эллипса, \(e\) − эксцентриситет, \(E\) − полный эллиптический интеграл второго рода.

    Приближенные формулы для периметра эллипса
    \(L \approx \pi \left[ {\large\frac{3}{2}\normalsize\left({a + b} \right) - \sqrt {ab} } \right],\;\;L \approx \pi \sqrt {2\left({{a^2} + {b^2}} \right)},\)
    где \(a\), \(b\) − полуоси эллипса.

    Площадь эллипса
    \(S = \pi ab\)

Когда мы имеем дело с круглыми кадками, всё довольно-таки просто. Действительно, есть диаметры - верхний и нижний, есть высота клёпки, нетрудно посчитать периметр... Остаётся только изготовить шаблон и строгать себе, набирая необходимую суммарную ширину клёпок. А как быть, если наше изделие - овальное? Сколько нужно для его изготовления шаблонов, и каких? Как формируется эта плавная линия, переходящая от малых радиусов в торцах изделия к большим, имеющим сравнительно незначительный изгиб, бокам?

Чтобы разобраться в этом вопросе, давайте начнём с метода, описанного Г. Я. Федотовым в книге «Секреты бондарного ремесла» . Вот что предлагает нам автор в главе «Анкерок», посвящённой изготовлению этого переносного плоского бочонка, имеющего в сечении овал.

Геометрический метод расчёта параметров овала по Федотову

Как известно, овал состоит из четырёх сопрягаемых дуг - двух больших и двух малых. Остов словно собран из клёпок большого и маленького бочонка. По сути дела, так оно и есть. Только, разумеется, клёпки двух видов мастер изготовляет специально - одни как бы для малого бочонка, другие - для большого. Затем, расположив их в определённом порядке, стягивает обручами, получая остов с прижатыми боками и овальным сечением.

Для того, чтобы точно определить, какими должны быть клёпки того и другого вида, сколько их должно входить в набор остова, необходимо выполнить некоторые расчёты. Прежде всего на листе бумаги в натуральную величину вычерчивают овальное сечение остова в самой широкой его части. Циркулем проводят вспомогательную окружность, диаметр которой должен быть равен высоте бочонка. (Под высотой в данном случае Г.Я. Федотов подразумевает большую ось овала - это видно из рисунка ). Её центр отмечают двумя взаимно перпендикулярными осевыми линиями. Вертикальную ось делят на пять равных частей. Вокруг точек 1 и 4 проводят две малые окружности, касательные к большой вспомогательной окружности. Через точки пересечения горизонтальной осевой линии со вспомогательной окружностью и центры малых окружностей проводят прямые линии. В местах пересечения этих линий с дугами малых окружностей будут находиться так называемые точки сопряжения. Их соединяют с помощью циркуля большими дугами. Центры этих дуг будут находиться на пересечении горизонтальной осевой линии и большой дуги вспомогательной окружности.

Руководствуясь вычерченным на бумаге овалом, изготовляют два шаблона. Контуры одного из них должны соответствовать малой дуге овала, а другого - большой.

Для того чтобы точно установить, сколько клёпок потребуется для сборки остова бочонка, необходимо определить его периметр. Он будет равен сумме длины больших и малых дуг. Длину каждой дуги находят следующим образом. Сначала определяют периметр полных окружностей, частью которых являются дуги, составляющие овал. Периметры устанавливают по формуле 2πR, где π=3,14. Затем, разделив периметр малой окружности на 3 части, получают длину малой дуги. В свою очередь периметр большой окружности делят на шесть частей и определяют длину большой дуги. Суммарную длину двух дуг удваивают и получают периметр овала.

Не правда ли - всё просто? Этот метод действительно работает, и работает безупречно.

Но что, если наше овальное изделие - ванна объёмом литров на 500?

Вычертить её в натуральную величину - задача не из самых лёгких. А ведь таких чертежей нужно два - для верхнего и для нижнего овала.

Масштабирование? Чревато неточностями…

Из геометрии построения, приведённой Г. Я. Федотовым нетрудно вывести формулы, с помощью которых те же величины можно получить, не вычерчивая ничего на бумаге.

Алгебраический метод расчёта параметров овала по Федотову

Несмотря на то, что Геннадий Яковлевич этих формул в книге не приводит, мы всё равно назовём метод его именем, поскольку он верен только для чертежа, приведённого выше, и, по сути, просто его заменяет.

Итак, пусть L - длина овала, l - его ширина, r - радиус малой окружности, R - радиус большой окружности.

1) Находим радиус малой окружности:

r= L/5

2) Находим вспомогательную величину h - расстояние между точкой пересечения осевых линий и центром малой окружности A 1:

h=1,5 r

3)Находим вспомогательную величину c - расстояние между двумя параллельными прямыми B 2 A 1 и A 2 B 1:

c=√ [(L/2) 2 + h 2 ]

4) Находим радиус большой дуги R:

R= c+ r

5) Находим вспомогательную величину q - расстояние между точкой B 1 (B 2) и точкой пересечения большой дуги овала и горизонтальной осевой линии:

q= L- R

6) Находим ширину овала l:

l= L-2 q

7) Умножаем на 2 радиусы R и r находим параметры D и d. Это наши диаметры - те, что нужны для изготовления шаблонов.

8) Находим длину малой дуги m:

m= πd/3

9) Находим длину большой дуги M:

M= πD/6

10) И, наконец, находим периметр овала p:

p=2(M+ m)

Этот расчёт придётся повторить для нахождения параметров второго овала (низа или верха нашей ванны).

При расчёте овала по Федотову нужно иметь в виду некоторые особенности.

Во-первых, мастер может задавать только длину овала L. Его ширина l уже рассчитывается, то есть оказывается жёстко привязана к определённому значению длины. Другими словами, если нам нужно изменить ширину, придётся менять и длину. Это неудобно.

Во-вторых, при расчётах по этому методу получается, что у больших и малых дуг нашего изделия оказывается разная конусность . Так, для ванны в 500 л ,
которая рассчитана именно таким способом, диаметры больших дуг сверху и снизу равны 204 и 234 см соответственно, а диаметры малых - 52 и 60. Таким образом, при высоте клёпки в 85 см коэффициент конусности для малой дуги равен 0,094, а для большой - 0,353. Для такого овала не работают закономерности, описанные в статье «Конусность бондарного изделия» , и надёжность фиксации деревянных обручей на определённой высоте приходится определять опытным путём.

Универсальные формулы для расчётов параметров овала

Однако, оказывается, вертикальную ось овала на нашем чертеже необязательно делить именно на пять частей. Можно и на четыре части, и на три, и на шесть. Более того, вообще необязательно её делить на равные части. Угол, образованный горизонтальной осевой и линиями AB вообще может быть любым (в пределах чертежа, конечно же).

Обозначим этот угол символом γ. И пусть оси овала (его длина и ширина соответственно) равны a и b.

Тогда универсальные формулы для расчёта параметров овала будет выглядеть так:

R=[(b/2*(sin(γ )-1)+(a/2*cos γ )] /

r=[(b/2*cos (γ /2)) - (a/2*sin (γ /2))] / [(cos (γ /2)-sin (γ /2)]

Выглядят страшновато? Хм, пожалуй, так и есть. Но зато, применяя эти формулы, мы можем свободно задавать три параметра: длину овала, его ширину и вспомогательный угол γ. А это означает, что мы можем рассчитать овал с любыми заданными габаритными размерами a и b, да ещё и не один. С одними и теми же значениями a и b мы можем получить столько разных овалов, сколько сможем придумать различных значений вспомогательного угла γ, вписывающихся в чертёж.

Поясним на примере. Пусть нам нужно рассчитать овал, оси которого равны 150 и 84 см соответственно (параметры большого овала нашей ванны на 500 л). Из таблицы видно, как будут меняться диаметры D и d, длины большой и малой дуг M и m, а также периметр овала p в зависимости от изменения угла γ.

Длина овала, a, см

Ширина овала, b, см

Диаметр большой дуги, D, см

Диаметр малой дуги, d, см

Длина большой дуги, M, см

Длина малой дуги, m, см

Периметр овала, p, см

Все эти овалы будут иметь немного разные контуры, но одни и те же габаритные размеры - 150х84 см.

При этом, задавая значения для большого и малого овалов нашего изделия, мы свободно можем задать одинаковую конусность для большой и малой дуг, что сделает наши овалы как бы равномерно вписанными один в другой, если смотреть на них сверху. У таких изделий разница больших и малых диаметров будет одинакова, а, следовательно, одинаковым будет и коэффициент конусности. Пример такого изделия - наш пуфик ,
имеющий такие параметры: диаметры больших дуг - 96 и 90 см, диаметры малых дуг - 36 и 30 см, длины большого и малого овалов - 66 и 60 см, а их ширины - 44 и 38 см. Как видите, разница как в диаметрах, так и в габаритных размерах везде равна 6 см. Коэффициент конусности при высоте клёпки в 45 см составляет 0,133. Деревянные обручи по всей поверхности натягиваются на изделие одинаково и надёжно фиксируются на заданной высоте.

Для того, чтобы не нужно было каждый раз проводить сложные расчёты, достаточно один раз забить вышеприведённые формулы в какую-нибудь вычислительную программку. Ниже вы можете скачать документ Excel, в которой вводятся только величины a и b (нужно ввести одинаковые значения во все строки), после чего программа автоматически сгенерирует все необходимые параметры таких овалов при широком спектре угла γ. Только ничего не вводите от руки в другие столбцы, чтобы не заменить формулы числовыми значениями.

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Овал - это замкнутая коробовая кривая, имеющая две оси симметрии и состоящая из двух опорных окружностей одинакового диаметра, внутренне сопряженных дугами (рис. 13.45). Овал характеризуется тремя параметрами: длина, ширина и радиус овала. Иногда задают только длину и ширину овала, не определяя его радиусов, тогда задача построения овала имеет большое множество решений (см. рис. 13.45, а...г).

Применяют также способы построения овалов на основе двух одинаковых опорных кругов, которые соприкасаются (рис. 13.46, а), пересекаются (рис. 13.46, б) или не пересекаются (рис. 13.46, в). При этом фактически задают два параметра: длину овала и один из его радиусов. Эта задача имеет множество решений. Очевидно, что R > ОА не имеет верхней границы. В частности R = О 1 О 2 (см. рис. 13.46.а, и рис. 13.46.в), а центры О 3 и О 4 определяют, как точки пересечения базовых кругов (см. рис. 13.46,б). Согласно общей теорией точки, сопряжения определяются на прямой, соединяющей центры дуг соприкасающихся окружностей.

Построение овала с соприкасаю­щимися опорными окружностями (задача имеет множество решений) (рис. 3.44). Из центров опорных окружностей О и 0 1 радиусом, равным, например, расстоянию между их центрами, проводят дуги окруж­ностей до пересечения в точках О 2 и О 3 .

Рисунок 3.44

Если из точек О 2 и О 3 провести прямые через центры О и O 1 , то в пересечении с опорными окружнос­тями получим точки сопряжения С , C 1 , D и D 1 . Из точек О 2 и О 3 как из центров радиусом R 2 проводят дуги сопряжения.

Построение овала с пересека­ющимися опорными окружностями (задача также имеет множество решений) (рис. 3.45). Из точек пе­ресечения опорных окружностей С 2 и О 3 проводят прямые, например, через центры О и O 1 до пересечения с опорными окружностями в точках сопряжения С, С 1 D и D 1 , а ра­диусами R 2 , равными диаметру опорной окружности,- дуги со­пряжения.

Рисунок 3.45 Рисунок 3.46

Построение овала по двум задан­ным осям АВ и CD (рис. 3.46). Ниже приведен один из множества вариантов решения. На верти­кальной оси откладываются отре­зок ОЕ, равный половине большой оси АВ. Из точки С как из центра проводят дугу радиусом СЕ до пе­ресечения с отрезком АС в точке Е 1 . К середине отрезка АЕ 1 восстанавливают перпендикуляр и отмечают точки его пересечения с осями ова­ла O 1 и 0 2 . Строят точки O 3 и 0 4 , симметричные точкам O 1 и 0 2 от­носительно осей CD и АВ. Точки O 1 и 0 3 будут центрами опорных ок­ружностей радиуса R 1 , равного от­резку О 1 А, а точки O 2 и 0 4 - цент­рами дуг сопряжения радиуса R 2 , равного отрезку О 2 С. Прямые, со­единяющие центры O 1 и 0 3 с O 2 и 0 4 в пересечении с овалом опреде­лят точки сопряжения.


В AutoCAD построение овала производится с помощью двух опорных окружностей одинакового радиуса, которые:

1. имеют точку соприкосновения;

2. пересекаются;

3. не пересекаются.

Рассмотрим первый случай. Строят отрезок OO 1 =2R, параллельный оси Х, на его концах (точки О и О 1) размещают центры двух опорных окружностей радиуса R и центры двух вспомогательных окружностей радиуса R 1 =2R. Из точек пересечения вспомогательных окружностей О 2 и О 3 строят дуги CD и C 1 D 1 соответственно. Удаляют вспомогательные окружности, затем относительно дуг CD и C 1 D 1 обрезают внутренние части опорных окружностей. На рисунке ъъъ полученный овал выделен толстой линией.

Рисунок Построение овала с соприкасающимися опорными окружностями одинакового радиуса

В астрономии, когда рассматривают движение космических тел по орбитам, часто применяют понятие "эллипс", поскольку их траектории характеризуются именно этой кривой. Рассмотрим в статье вопрос, что представляет собой отмеченная фигура, а также приведем формулу длины эллипса.

Что такое эллипс?

Согласно математическому определению, эллипс - это замкнутая кривая, для которой сумма расстояний от любой ее точки до двух других определенных точек, лежащих на главной оси, и носящих название фокусов, является постоянной величиной. Ниже приведен рисунок, который поясняет это определение.

На рисунке сумма расстояний PF" и PF равна 2 * a, то есть PF" + PF = 2 * a, где F" и F - фокусы эллипса, "a" - длина его большой полуоси. Отрезок BB" называется малой полуосью, а расстояние CB = CB" = b - длина малой полуоси. Здесь точка C определяет центр фигуры.

На рисунке выше также показан простой метод с веревкой и двумя гвоздиками, который широко используется для изображения эллиптических кривых. Другой способ получить эту фигуру заключается в выполнении под любым углом к его оси, который не равен 90 o .

Если эллипс вращать вдоль одной из его двух осей, то он образует объемную фигуру, которая зазывается сфероидом.

Формула длины окружности эллипса

Хотя рассматриваемая фигура является достаточно простой, длину ее окружности точно можно определить, если вычислить так называемые эллиптические интегралы второго рода. Однако, индусский математик-самоучка Рамануджан еще в начале XX века предложил достаточно простую формулу длины эллипса, которая приближается к результату отмеченных интегралов снизу. То есть рассчитанное по ней значение рассматриваемой величины будет немного меньше, чем реальная длина. Эта формула имеет вид: P ≈ pi * , где pi = 3,14 - число пи.

Например, пусть длины двух полуосей эллипса будут равны a = 10 см и b = 8 см, тогда его длина P = 56,7 см.

Каждый может проверить, что если a = b = R, то есть рассматривается обычная окружность, тогда формула Рамануджана сводится к виду P = 2 * pi * R.

Отметим, что в школьных учебниках часто приводится другая формула: P = pi * (a + b). Она является более простой, но и менее точной. Так, если ее применить для рассмотренного случая, то получим значение P = 56,5 см.